SAT-based approach to verification of logical descriptions with functional indeterminacy

Liudmila Cheremisinova, Dmitry Novikov

The United Institute of Informatics Problems of National Academy of Sciences of Belarus

8-th International Workshop on Boolean Problems
September 18 - 19, 2008, Freiberg (Sachsen)
Typical task formulation of formal verification

Comparing circuit

Combinational equivalence checking is verifying functional equivalence of two combinational circuits.

Formal verification: both verified circuits are transformed into a single comparing circuit – a miter.

There is constant 0 on miter output if the compared circuits are equivalent.

The miter circuit is converted into a CNF form.

The task comes to SAT problem – checking whether CNF formula is not satisfiable.
Task formulation for the case of descriptions with functional indeterminacy

Checking whether a given system of incompletely specified Boolean functions (ISF) is implemented by a given combinational circuit

Data representation

<table>
<thead>
<tr>
<th>ISF system</th>
<th>Combinational circuit consisting of gates AND, OR and NOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>[x_1 \ x_2 \ x_3 \ x_4 \ x_5]</td>
<td>[f_1 \ f_2]</td>
</tr>
<tr>
<td>[\begin{array}{c} \ - \ - \ 1 \ 1 \</td>
<td>\ 1 \ - \ 1 \ 1 \ 1 \ - \ - \</td>
</tr>
</tbody>
</table>

Input part

Multiple-output cubes \((u_i, t_i)\)

\[u_i = x_2 x_4 x_5 \]

\[t_i = f_2 \]
Simulation-based verification

1) Ternary matrix U is transformed into a Boolean matrix U'

- U' is obtained by replacing the ternary values 0, 1, $-$ with binary values 0, 1, respectively.

- For example, the first row of U becomes 1 0 0 1 1, and the second row becomes 0 1 1 1 1.

2) Stimulating inputs of the circuit with binary signals corresponding to the rows of U'

3) Propagating signals through the circuit activating the circuit primary outputs

4) Checking whether circuit output signals do not contradict to the specified ones

Drawback: exponential growing of the matrix U' when the number of "-" increases
Testing using SAT-solver whether the given combinational circuit implements:

Subsequent Testing:
- a **single-output** cube of the given specification;
- a **multiple-output** cube

Simultaneous Testing:
- all multiple-output cubes **simultaneously** within the only SAT session.
CNF encoding of combinational circuit

(conventional circuit-to-CNFS transformation)

1. Construction of CNF-formulas of local functions of gates;
2. Joining local CNFs into the conventional CNF of the circuit

Combinational circuit

![Combinational circuit diagram](image)

Conventional CNF of the circuit

\[
\begin{align*}
\varphi^\lor(y, z_1 z_2 \ldots z_k) &= (z_1 \lor \bar{y}) (z_2 \lor \bar{y}) \ldots (z_k \lor \bar{y}) (z_1 \lor z_2 \lor \ldots \lor z_k \lor \bar{y});
\end{align*}
\]

k-input AND:

\[
\varphi^\land(y, z_1 z_2 \ldots z_k) = (\bar{z_1} \lor y) (\bar{z}_2 \lor y) \ldots (\bar{z_k} \lor y) (\bar{z}_1 \lor \bar{z}_2 \lor \ldots \lor \bar{z}_k \lor y).
\]
SAT-based model of testing multiple-output cubes of ISF system

Multiple-output cube of an ISF system $f(x)$:

$$(u_i, t_i) \in f(x): u_i = x_{i1} x_{i2} \ldots x_{i_k}, t_i = f_{i1} f_{i2} \ldots f_{il}$$

$$u_i \rightarrow t_i: x_{i1} x_{i2} \ldots x_{i_k} \rightarrow f_{i1} f_{i2} \ldots f_{il}$$

A circuit has the same functionality as an ISF system $f(x)$ iff for every input stimulus implied by the input part u_i of any $(u_i, t_i) \in f(x)$ Boolean vector of values of the circuit outputs is covered by the ternary output part t_i.

Or in terms of the circuit CNF: for every $(u_i, t_i) \in f(x)$ a partial value assignment $u_i \cup t_i$ of input and output variables should be satisfying assignment for the CNF:

$$\text{CNF} \rightarrow (u_i \rightarrow t_i)$$
Checking whether a circuit implements a single-output cube

The circuit implements the single-output cube, iff the extended CNF is unsatisfiable.
Checking whether the circuit implements a single-output cube: matrix representation

ISF system:

\[
\begin{array}{cccccc}
\chi_1 & \chi_2 & \chi_3 & \chi_4 & \chi_5 & f_1 & f_2 \\
- & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & - & - & - & - & 1 \\
U = & 0 & 0 & 0 & - & T = & 0 & 1 \\
0 & 1 & - & 1 & 0 & 0 & 4 \\
- & 0 & 1 & 0 & - & - & 0 & 5 \\
- & 1 & - & 1 & - & - & 1 & 6 \\
\end{array}
\]

Extended conventional CNF of the circuit:

\[
\begin{array}{cccccccccccc}
x_1 & x_2 & x_3 & x_4 & x_5 & z_1 & z_2 & z_3 & y_1 & y_2 \\
1 & - & - & - & - & 0 & - & - & - & 1 \\
- & 1 & - & - & - & 0 & - & - & - & 2 \\
0 & 0 & - & - & - & 1 & - & - & - & 3 \\
- & - & - & 1 & - & - & 0 & - & - & 4 \\
- & - & - & 1 & - & 0 & - & - & - & 5 \\
- & - & - & 0 & 0 & 1 & - & - & - & 6 \\
- & - & - & 0 & - & - & 1 & 0 & - & 7 \\
- & - & - & 1 & - & - & - & 1 & - & 8 \\
- & - & - & - & - & 0 & 1 & - & - & 9 \\
- & - & - & - & 1 & 1 & - & 0 & - & 10 \\
- & - & - & - & - & 0 & - & - & 1 & 11 \\
- & - & - & - & - & 0 & - & - & 1 & 12 \\
\end{array}
\]

Searching for a satisfying assignment proves that there exists a counter-example for \((u_6, t_6)\):

\[1 1 - 1 1 1 1 1 1 0.\]
Checking whether the circuit implements a multiple-output cube

In general case the output part $t_i = y_{i1}^{\sigma_1} y_{i2}^{\sigma_2} ... y_{ik}^{\sigma_k}$ of a multiple-output cube (u_i, t_i) consists of more than one component having definite value.

We add to CNF $n + 1$ clauses: n clauses of the type $x_j^{\sigma_j} (x_j \in u_i)$ and a clause $y_{i1}^{\sigma_1} \lor y_{i2}^{\sigma_2} \lor ... \lor y_{ik}^{\sigma_k}$ of size k.
Checking whether the circuit implements a set of multiple-output cubes simultaneously

For each multiple-output cube \((u_i, t_i)\) we introduce new variable \(w_i\) which implies extension of the CNF generating by \((u_i, t_i)\):

\[
\text{ext}(u_i, t_i) = u_i \cup \neg t_i \quad \text{or}
\]

\[
\text{ext}(u_i, t_i) = x_1^{y_1} \land x_2^{y_2} \land \ldots \land x_n^{y_n} \land (y_{i1}^{\sigma_1} \lor y_{i2}^{\sigma_2} \lor \ldots \lor y_{ik}^{\sigma_k})
\]

\[
w_i \rightarrow \text{ext}(u_i, t_i) = w_i \lor \text{ext}(u_i, t_i) =
\]

\[
= (x_1^{y_1} \lor \neg w_i) \land (x_2^{y_2} \lor \neg w_i) \land \ldots \land (x_n^{y_n} \lor \neg w_i) \land (y_{i1}^{\sigma_1} \lor y_{i2}^{\sigma_2} \lor \ldots \lor y_{ik}^{\sigma_k} \lor \neg w_i)
\]

\(\bullet\)

The circuit CNF is appended with:
1) groups of clauses \(\bullet\) for testing all multiple-output cubes;
2) an additional clause \(w_1 \lor w_2 \lor \ldots \lor w_l\) to allow SAT-solver to seek for satisfying assignment for at least of one of introduced groups of clauses.

CNF formula for testing a set of multiple-output cubes simultaneously:

\[
\text{CNF} \land (w_1 \lor w_2 \lor \ldots \lor w_l) \land (w_1 \rightarrow \text{ext}(u_1, t_1)) \land (w_2 \rightarrow \text{ext}(u_2, t_2)) \land \ldots \land (w_l \rightarrow \text{ext}(u_l, t_l))
\]
The example of checking whether the circuit implements all multiple-output cubes

A set of multi-output cubes:

<table>
<thead>
<tr>
<th>x₁, x₂, x₃, x₄, x₅</th>
<th>f₁, f₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u₂, t₂) = 1 1 1 0 0</td>
<td>1 0</td>
</tr>
<tr>
<td>(u₆, t₆) = 1 1 0 1 0</td>
<td>0 1</td>
</tr>
</tbody>
</table>

Extended CNF:

<table>
<thead>
<tr>
<th>x₁, x₂, x₃, x₄, x₅, z₁, z₂, z₃, y₁, y₂, w₂, w₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 0 0 0 0 0 0 1</td>
</tr>
</tbody>
</table>

Additional clause: $w₂ \lor w₆$

One of satisfying assignments:

CNF does not imply one of these multiple-output cubes
Conclusion

The following contributions to the problem of verification are proposed:

- A case is considered when one of the compared descriptions is incompletely specified.
- It is shown how it is possible to use SAT tools for the considered case.
- An effective way of reducing the complexity and speeding up verification procedure is supposed that organizes simultaneous checking of multiple-output cubes of ISF system.

Thank you for your attention